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Abstract—We investigate non-contact sensing of temporalis
muscle contraction in smart eyeglasses frames to detect eating
activity. Our approach is based on infra-red proximity sensors
that were integrated into sleek eyeglasses frame temples. The
proximity sensors capture distance variations between frame
temple and skin at the frontal, hair-free section of the temporal
head region. To analyse distance variations during chewing and
other activities, we initially perform an in-lab study, where
proximity signals and Electromyography (EMG) readings were
simultaneously recorded while eating foods with varying texture
and hardness. Subsequently, we performed a free-living study
with 15 participants wearing integrated, fully functional 3D-
printed eyeglasses frames, including proximity sensors, process-
ing, storage, and battery, for an average recording duration of
8.3 hours per participant. We propose a new chewing sequence
and eating event detection method to process proximity signals.
Free-living retrieval performance ranged between the precision of
0.83 and 0.68, and recall of 0.93 and 0.90, for personalised and
general detection models, respectively. We conclude that non-
contact proximity-based estimation of chewing sequences and
eating integrated into eyeglasses frames is a highly promising tool
for automated dietary monitoring. While personalised models can
improve performance, already general models can be practically
useful to minimise manual food journalling.

Index Terms—automatic dietary monitoring, eating detection,
chewing detection, smart eyeglasses, wearable accessory

I. INTRODUCTION

Automated Dietary Monitoring (ADM) aims to retrieve and
record diet-related information to ease or remove manual diet
journalling, and thus could assist in coaching healthy eating
patterns [1]. While various wearable sensor approaches have
been investigated to monitor chewing and food intake, robust
and universally applicable solutions are yet not available. Over
recent years, smart, but regular-look eyeglasses have become
a central basis for ADM research. For example, Zhang et
al. [2] proposed Electromyography (EMG) recordings within
eyeglasses temples around ear bends to capture temporalis
muscle activity of chewing. They validated EMG-based moni-
toring and algorithms to infer eating from chewing activity [3].
Recently, Selamat and Ali [4] proposed to attached a proximity
sensor at an eyeglasses frame and capture distance variations
between skin and temple during temporalis muscle contrac-
tions. More details on related work are described further below.

The temporalis muscle is a wide, fan-shaped muscle located
at the temporal fossa, i.e. temporal head region. Anterior
vertical fibres of the muscle are largely working as mandible
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Fig. 1: Non-contact muscle monitoring smart eyeglasses. (A):
Eyeglasses frame with bilateral proximity sensors, electronics,
and battery. (B): Worn smart eyeglasses.

elevator, to close the jaw, to oppose gravity, and to provide
crushing force when chewing food. Posterior fibres are mostly
responsible for mandible retraction [5]. Muscle contractions
can be detected by its volume changes. Eyeglasses frame tem-
ples are conveniently located next to the temporalis muscles,
from forehead to ear bends. Estimating the varying distance
between skin and temple during muscle volume changes could
become an important alternative to existing eating monitoring
approaches. Yet, the performance of an integrated system in
free-living study conditions has not been investigated.

In this work, we implement regular-look smart eyeglasses
that provide a complete setup for unobtrusive proximity sensor
data recording. The smart eyeglasses can capture chewing
activity as a basis to infer eating behaviour. In particular, the
following contributions are made:

1) We present an eyeglasses frame-integrated monitoring
system, comprising bilateral proximity sensors, signal
acquisition, data storage, and battery.

2) We use smart eyeglasses in an in-lab and a free-living
study to capture over 126 hours of representative data of
different food types, activities of daily living (ADLs),
and individual routine behaviour. We analyse parallel
proximity and EMG recordings.

3) We present a novel signal processing and pattern recog-
nition procedure for eating event detection using prox-
imity sensors and report retrieval performance.



II. RELATED WORK

We focus our review on literature that exploits the tempo-
ralis volume change to detect eating or chewing activity.

Zhou and Lukowicz [6] proposed Snacap to monitor snack-
ing behaviour with a smart fabric. Snacap used mechanomyo-
graphy (MMG) at the temporal region whereby a pressure-
sensitive textile sensor inside a head cap detected muscle
activity by mechanical coupling the muscle and the textile
sensor. MMG couples muscle movement mechanically, i.e. not
electrically, and therefore no skin-electrode contact is needed.
The authors evaluated their approach with ten participants
consuming different snacks and by simulating ADLs in an
office building. Each participant recording lasted between
30 and 60 minutes. Chung et al. [7] presented GlasSense,
i.e. eyeglasses for monitoring food intake patterns and facial
activity by detecting chewing muscle contraction with load
cells attached to the eyeglasses hinges. Temporalis muscle
contractions would cause a slight movement at the frame
temples, which results in increased pressure at the hinges.

Wang et al. [8] used a motion-based sensor to record masti-
cation muscle contraction, detect eating, and count chewing
cycles. They used a triaxial accelerometer attached to the
temporalis area, and recorded EMG measurements to obtain
ground truth. The accelerometer was embedded into a head-
band to hold it in place. Authors observed that temporalis mus-
cle contraction frequency corresponded to the one of chewing,
and thus could be used to count chewing cycles. Bedri et
al. [9] utilised a pair of eyeglasses for multi-modal sensing,
including a camera to capture food images, a proximity sensor
to detect hand to mouth motion, four gyroscopes for chewing
monitoring, and an accelerometer to detect swallowing. Farooq
and Sazonov [10] attached a piezoelectric sensor to a pair of
eyeglasses to segment and characterise chewing activity. They
attached the sensor element directly to the temple area inter-
facing with the temporalis muscle via a mechanical deflection.
Selamat and Ali [4] mounted a proximity sensor within a 3D-
printed housing at a frame temple to detect chewing. In their
experimental analysis, proximity to the temporal region of one
participant and one head side were recorded. The participant
performed ten different activities, including eating, for a total
dataset duration of 40 minutes. Push buttons were used to
obtain labels for eating and chewing activity.

Most developments so far have attached bulky sensors,
including proximity sensors, to eyeglasses frames. Due to the
cross-influence of sensor integration and their performance,
proximity-based eating detection in smart, non-stigmatising
eyeglasses remains as an open challenge. Our present work
explores the volume change in comparison to EMG recordings
as well as analysed eating detection performance across free-
living recordings from 15 participants.

III. METHODOLOGY

A. Smart Eyeglasses Design

We 3D-printed regular-look eyeglasses frames as a platform
for sensors, microcontroller, data storage, and battery. Two

proximity sensors (Vishay VCNL4010) assembled at custom-
designed boards were bilaterally embedded at frontal temple
areas, angled toward anterior temporalis muscles. The prox-
imity sensor detected reflected infra-red light, where closer
surfaces correlate to larger reflected light intensity than sur-
faces further away. Measurement units were kept as basic,
non-calibrated counts. Proximity sensor were sampled at 50 Hz
by a microcontroller (ST STM32F4) and readings stored in
512 MB flash memory. Figure 1 illustrates the designed smart
eyeglasses and integrated components.

B. Participant Information

We performed an in-lab study and a free-living study, each
with the same 15 participants (four females) between 23 and
33 years old. Body Mass Indices ranged between 18.9 kg/m2

and 29.3 kg/m2, avg. 23.93 kg/m2. Participants had no known
dental or dietary-related disorder, nor vision impairment. The
study was approved by an institutional ethical committee.

C. In-lab Study

The in-lab study aimed to record temporalis muscle activity
in a controlled environment with smart eyeglasses and an EMG
reference (CamNtech Actiwave). Participants were asked to
perform several activities, including eating, to simulate ADLs,
while wearing the eyeglasses. A free choice of food items was
provided, including baguette, carrot, apple, cheddar, chips, and
beef jerky. Foods were provided in 2 g, 4 g, and 6 g slices.
Participants were encouraged to eat at least two items.

Annotation & ground truth: We annotated activity timing
with a stopwatch and a paper journal, plus recorded the
study on video. Annotations were used to create ground truth,
complemented by reviewing videos when there were doubts.

D. Free-Living Study

After an in-lab session, participants were invited to wear the
smart eyeglasses for one day, from wake up to bed time. Due
to battery limitations, eyeglasses needed to be taken off for
recharging. Participants were encouraged to start recordings
at 8:00 am, and take a charging break of 90 min before lunch.
A second charging break was needed before dinner. We sug-
gested participants to schedule charging breaks to not conflict
with their meal times. Moreover, we instructed participants
to take off eyeglasses during physically intense or potentially
damaging activities, including showering, bathing, and sports.
Participants with an eye condition, e.g. myopia, and unable
to wear contact lenses, were instructed to use their regular
prescription eyeglasses instead for activities that required good
vision, e.g. driving a car or working with machinery.

Annotation & ground truth: Participants were instructed
to note down start and end of eating periods and when
not wearing the smart eyeglasses, rounded to the nearest
minute. To obtain ground truth, we synchronised and matched
participant annotations with raw signal recordings. If there
were conflicts or doubts, we interviewed participants about
that particular time period and resolved mismatches.



E. Chewing Sequence Detection Algorithm

We developed an algorithm to detect signal segments of
chewing a food bite, i.e. chewing sequences [1]. Eating events
were considered as periods of one or more chewing sequences
within temporal bounds, following the approach of Zhang and
Amft [11]. Figure 2 illustrates all processing steps.

1) Low-pass filter 2) Gradient

3) Teager–Kaiser Energy Operator4) Rectification

5) Moving average 6) Thresholding & gap filling

Fig. 2: Block diagram of the chewing sequence detection
algorithm developed for proximity sensor signals.

1) Low-pass filter: We removed high frequency noises by
a fifth-order Butterworth low-pass filter with a 2 Hz cutoff.

2) Gradient: Signal readings varied during mastication
substantially more than during other ADLs. We obtained
the signals’ first derivative that highlight signal sections that
possibly contain chewing activity.

3) Teager–Kaiser Energy Operator: The Teager-Kaiser En-
ergy Operator (TKEO) [12] was used to remove high-frequent
content of signal derivatives.

4) Rectification: Full-wave rectification was performed to
obtain a signal envelope of chewing sequences.

5) Moving average: Envelope curves were smoothed by a
moving average filter with a 5 sa. window and 1 sa. step size.

6) Thresholding & gap filling: A two-thresholding method
was applied to envelop signals, thus estimating chewing se-
quences. A chewing sequence label was assigned if the envelop
signal amplitude was between both thresholds. Gaps smaller
than 5 min between detected chewing sequences were filled to
derive eating event estimates, according to [11].

F. Averaged vs. Personalised Threshold

1) Averaged Threshold: To obtain an average threshold pair
that fitted all study participant, we analysed in-lab data. Across
all chewing sequences, a grid search was performed to find the
highest F1 score.

2) Personalised Threshold: To further investigate proxim-
ity sensor-based detection performance, we personalised the
threshold pair using in-lab recordings of each participant. The
threshold pair that resulted in the highest F1 score was selected
per participant and applied to the free-living study data.

G. Bilateral Proximity Fusion

Time-synchronous recordings of bilateral proximity sensor
data, i.e. temporalis muscle volume changes from left and right
side, were fused by logic AND operation over both eating label
estimates to obtain the final eating event.

IV. RESULTS AND DISCUSSIONS

A. Recording Statistics

Fig. 3: Dataset statistics of eating and non-eating time accord-
ing to our ground truth across all 15 study participants.

Our in-lab study yielded a total of almost 2 hours of
data, with an average of ∼8 min per participant. Total eat-
ing time was ∼22 min. Total free-living recording time was
∼115 hours, with a cumulative eating time of ∼9 hours. Aver-
age recording per participant was ∼7 hours and 40 min, with
∼36 min average eating time. Figure 3 shows ratios of eating
vs. other activities in our studies.

B. Phenomena Analysis
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Fig. 4: Example of synchronised proximity sensor and EMG
timeseries to support the analysis of muscle volume changes.

To better understand muscle volume change, proximity
sensor readings, and muscle contraction during chewing, we
analysed smart eyeglasses data and simultaneously recorded
EMG of the temporalis muscle from the in-lab study. Filtered
and rectified EMG data was synchronised by manually align-
ing dedicated teeth clenching signal marks of the timeseries,
after up-sampling proximity data to the EMG rate of 256 Hz.
Figure 4 illustrates an example of proximity and EMG time-
series data. Proximity and EMG signal peaks show temporal
alignment, thus both signals mark contraction during chewing
cycles. No visual agreement of proximity peak height and
muscle work (i.e. EMG signal energy) was observable.

C. Performance Analysis

Figure 5 shows eating event detection performance for in-
lab study data. While there are noticeable improvements in
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Fig. 5: In-lab study: Precision and recall of eating event
detection with personalised and averaged thresholds.
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Fig. 6: Free-living study: Precision and recall of eating event
detection with personalised and averaged thresholds.

average precision (0.94 from 0.87) when using personalised
thresholds, both threshold methods show promising mod-
elling performance. The in-lab results are not generalising,
as threshold parameters were fitted with the same data. Fig-
ure 6 shows retrieval performances for the free-living data.
As threshold settings were done based on in-lab data (see
Sec. III-F), deployment performance can be approximated.
Average recall showed that consistently most relevant eating
events were retrieved, for both averaged thresholds (0.90) and
for personalised thresholds (0.93). Average precision showed
substantial increase (0.83 from 0.68) for personalised thresh-
olds, indicating that proximity-based eating event detection is
meaningful. However, inter-individual differences and artefacts
limited performance for averaged thresholds.

V. CONCLUSIONS & FURTHER WORK

Temporalis muscle contraction results in noticeable alter-
ation in skin surface proximity to eyeglasses temples. We
exploit the distance variation to detect chewing sequences
and infer eating events using non-contact proximity sensors
in-lab and free-living studies. Eating event detection analysis
in free-living showed promising results that promote muscle
contraction monitoring in smart eyeglasses as an alternative
to established contact sensors. Due to the proximity sensing
mechanism, sensor readings vary depending on individual head
shape, activity, and lighting environment. In the present in-
vestigation, personalised thresholds could partially compensate
for the variations. However, further investigations on sensors
and algorithms may enhance robustness.
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