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Figure 1: Overview on our smart eyeglasses with temple-embedded proximity sensors. A: Schematic of proximity signal capture.
B: Smart eyeglasses integration. C: Lab-based EMG reference. D: Lateral view of worn smart eyeglasses.

ABSTRACT
We compare performances of an expert model-based approach and a
data-based baseline for eating event detection using proximity sen-
sor data of smart eyeglasses. Proximity sensors in smart eyeglasses
can provide dynamic distance estimates of cyclic temporalis muscle
contraction during chewing without skin contact. Our expert model
is based on proximity signal preprocessing and two-threshold grid
search. In contrast, baseline data models were based on One-class
Support-Vector-Machines. We evaluate both models with in-lab and
free-living data from 15 participants. Free-living data were obtained
across one day of wearing smart eyeglasses with temple-integrated
proximity sensors in unconstrained settings. Overall, the retrieval
performance F1 score of the two-threshold-based algorithm for free-
living data ranged between 0.6 and 0.7, and outperformed all tested
SVM model configurations. While SVM models achieved maximum
recall, precision was often below 0.5. We report head-side specific
performances for a bilateral arrangement of the proximity sensors
and detail performance characteristics in model parameter sweeps.
We conclude that eating detection using proximity sensors in smart
eyeglasses is a promising approach for unconstrained automated
dietary monitoring. Nevertheless, further investigations are needed
to deal with the proximity signal characteristics in everyday life
monitoring.
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1 INTRODUCTION
Automated dietary monitoring (ADM) systems intend to detect
intake-related behaviour, thus could serve as a basis for continu-
ous dietary assistance, e.g. in weight management programmes,
or guide clinical decision-making for diagnosis and treatment of
dietary-related behaviour disorders. Recently, eyeglasses-attached
proximity sensors were proposed as a non-contact measurement
principle to detect temporalis muscle activation during chewing [4].
Food chewing involves a cyclic contraction and release of temporalis
muscles to elevate and relax the mandible bone. Mechanical excur-
sions due to temporalis muscles contractions are visually observable
at temporal head regions and can be captured by consumer-grade
proximity sensors based on the principle of emitted and reflected
infra-red (IR) light. IR-based proximity sensors can be conveniently
embedded into eyeglasses temples that provide a frame to interpret
distance changes between sensor and skin.
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While wearable system integration yields an inconspicuous eye-
glasses design to measure chewing activity, detection of eating
events is an open challenge due to several issues. First, skin ex-
cursions are within 1-2mm and eyeglasses temples have a typical
distance of 5-20mm to the skin, which puts IR-based proximity sen-
sors at the limits of their operational ranges. Second, eyeglasses are
not constantly in the same position, resulting in distance estimation
artefacts. Third, IR-based distance estimation can be perturbed by
variations in environmental lighting and sunlight effects.

In this work, we investigate proximity-based eating event de-
tection in free-living and compare two detection algorithms. In
particular, the paper provides the following contributions:

(1) We propose a regular-look smart eyeglasses design with bi-
laterally integrated IR-based proximity sensors in temples
to capture skin excursion during chewing activity. We im-
plemented in-lab and free-living studies with 15 participants
wearing the smart eyeglasses for one day each.

(2) We analyse eating detection performance by comparing
a two-threshold-based algorithm against an already estab-
lished approach based on Support-Vector-Machines (SVM).
Our expert-based algorithm was inspired by observing the
low-amplitude, artefact-rich proximity signal data.

(3) We present detailed retrieval performance analyses of both
eating detection methods.

2 RELATEDWORK
Here, we focus on approaches that exploited muscle activation to
detect chewing or eating events, especially those with a threshold-
based algorithm and SVM classifiers.

Wang et al. [6] used a motion sensor to capture masticatory
muscle contraction, detect eating, and count chewing cycles. They
used a triaxial accelerometer attached to the temporalis area and
recorded Electromyography (EMG) measurements as a reference.
The authors reported that temporalis muscle contraction frequency
corresponds to chewing frequency and thus could be used to count
chewing cycles. The eating activity was detected using SVM, among
other algorithms. Zhang and Amft [7] utilised smart eyeglasses
with integrated EMG electrodes to detect chewing, eating events,
and differentiated food types. They placed electrodes at temple ear
bends of personalised eyeglasses to detect contractions of tempo-
ralis muscles. In-lab and free-living studies with 10 participants
were performed. Chewing and eating events were detected with a
threshold-based algorithm. Shin et al. [5] mounted an attachable
MyDJ at an eyeglasses temple to detect food intake. They used a
piezoelectric sensor to capture temporalis muscle contraction and
an accelerometer to record the mechanical vibrations due to chew-
ing activity. They performed free-living studies with 30 participants
for a week, including a one-day data collection with a reference
camera. Eating episodes were detected using DNN with an F1 score
of 0.919. Bedri et al. [1] utilised inertial and optical sensors embed-
ded into a pair of eyeglasses. A camera was used to capture food
visuals. The authors conducted two studies to evaluate the system
with 23 participants, resulting in an average F1 score of 0.89 for
detecting eating and drinking episodes.

Selamat and Ali [3, 4] mounted an IR-based proximity sensor
within a 3D-printed housing at an eyeglasses frame temple to de-
tect chewing. In their experiment, proximity signals from the right
temple region of one participant were recorded. The participant per-
formed ten different activities, including eating, for a total dataset
duration of 40minutes. Push buttons were used to obtain labels
for eating and chewing activity. The authors tested several SVM
kernels on 40 time- and frequency-domain features derived from
proximity sensor data. Most developments so far have either used
threshold-based algorithms with expert-designed signal processing
pipelines, or machine learning classifiers based on general feature
sets, to detect intake activity. For proximity sensor data, only Sela-
mat and Ali have described an algorithm to detect chewing based on
SVMs [4]. In our present work, we compare expert-based (i.e. two-
threshold) and data-based (i.e. SVM) algorithms for eating detection.
In contrast to previous work, we investigate eating detection per-
formance in free-living recordings from 15 participants. We build
unobtrusive 3D-printed eyeglasses with frame-integrated sensors,
microcontroller, and battery (see Fig. 1A).

3 METHODOLOGY
3.1 Smart Eyeglasses Platform
We embedded IR-based proximity sensors (Vishay VCNL4010) in
regular-look 3D-printed eyeglasses. Figure 1B shows the bilateral
configuration with proximity sensors oriented to the anterior tem-
poralis muscle as illustrated in Fig. 1A. The proximity sensors de-
tect nearby surfaces by measuring reflected infra-red light, where a
higher intensity of reflected light correlates with a shorter distance.
Measurement units were basic, non-calibrated counts. The proxim-
ity data were recorded at 50Hz by a microcontroller (ST STM32F4)
and stored in 512MB flash memory integrated into the eyeglasses’
temple end. Our smart eyeglasses did not require external compo-
nents, which is essential for unconstrained free-living recordings.
Figure 2 shows a timeseries example of low-pass filtered proximity
sensor readings with the smart eyeglasses. The waveform shows
typical signal drift and artefacts, besides cyclic chewing patterns.
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Figure 2: Low-pass filtered proximity sensor data of left (L)
and right (R) head sides and rectified EMG. The highlighted
region indicates one chewing sequence, i.e. one bite.
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Table 1: List of feature used for the SVM-based algorithm.

Frame Features

TD Max, min, max-min, rms, median, variance,
std, skew, kurtosis, interquartal range.

FD Mean, bandpower, median, kurtosis, skew.
PSD Max, min, mean, std, spectral entropy,

spectral kurtosis, kurtosis, skew, median.
ESD Sum, min, max, mean, four energy band within

(0.94-2.17, 1.25-2.5, 0.5-2.5, 1-3) Hz, and 7
spectral energy at (1.3, 1.6, 1.9, 2.1, 2.4, 2.7, 3) Hz.

3.2 Two-Threshold-based Algorithm
The two-threshold-based algorithm was specifically designed to
deal with the proximity signal properties, including low amplitude
chewing patterns and motion-related artefacts.

Signal Processing. Proximity sensor readings of left and right head
sides were filtered by a 2Hz low-pass (see Fig. 2). Filtered signals
within the highlighted area show cyclic distance variation that cor-
responds to chewing cycles, as confirmed by EMG data. We increase
the signal contrast by deriving the signal gradient. To convert the
pattern into an amplitude, we apply the Teager–Kaiser Energy Op-
erator (TKEO) [2], followed by signal rectification. Finally, a moving
average (window size: 5 sa) was applied. On the resulting envelope
curve, we applied a two-threshold detector, where the upper thresh-
old helped to reject large signal artefacts and the lower threshold
was used to reject lower-amplitude signal noise.

Threshold Grid Search. Based on training data, a two-dimensional
grid of lower and upper threshold values was constructed. To obtain
optimal training performance, we searched the grid for lower (0− 1,
step size 0.01) and upper (0 − 100, step size 1) thresholds.

3.3 SVM-based Algorithm
Frame Segmentation & Feature Extraction. Hanning windows with
50% overlap were used to extract features from bandpass-filtered
signals (0.5 − 5𝐻𝑧). In total, 40 features were extracted, inspired
by the work of Selamat et al. [4]. Table 1 lists all features derived
from time domain (TD), frequency domain (FD), power spectral
density (PSD) and energy spectral density (ESD). TD features were
derived from sliding window signals, FD features after discrete-time
Fourier transform (DTFT) of the windowed signal, PSD was derived
as the magnitude of STFT in logarithmic (decibel) scale, and ESD
from the absolute square of PSD.

One-Class SVMs. In this work, we utilised One-Class SVMs to ac-
count for imbalanced data (eating vs. no eating) and to reduce
assumptions about non-eating data. We trained SVM models with
linear, quadratic, and Radial Basis Function (RBF) kernels.

3.4 Eating Detection
To compensate for artefacts and gaps between chewing sequences,
we employ a five seconds eating section removal on outputs of two-
threshold and SVM algorithms. Gaps between chewing sequences
are naturally reported as non-eating, especially for sliding window

sizes below 30 s. Therefore, we utilise gap filling between chewing
sequences, for gaps below 5min., as described by Zhang et al. [8].

3.5 Study Methods and Statistics
Our study involved 15 participants (four females), 23 to 33 years old.
BodyMass Indices (BMI) ranged between 18.9 kg/m2 and 29.3 kg/m2,
avg. 23.93 kg/m2. Each participant took part in both, in-lab and free-
living study parts. The study was approved by an institutional ethi-
cal committee and participants provided written consent before the
study began. Participants had no known dental or dietary-related
disorder, nor vision impairment beyond refractive error.

In-Lab Study. Participants were invited to perform a set of scripted
activities of daily living (ADL) in a lab setting. They were equipped
with smart eyeglasses and an additional EMG recorder mounted at
one temporal region (CamNtech Actiwave) to obtain a reference
of temporalis muscle contraction (see Fig. 1C). A free choice of
food items was provided, including baguette, carrot, apple, cheddar,
chips, and beef jerky. Foods were prepared in pieces of 2 g, 4 g, and
6 g. An observer annotated activity and timing on a paper journal.
Each study session was recorded on video. Subsequently, we used
the manual observer annotation of chewing sequences, i.e. each
bite, to create the ground truth, complemented by reviewing videos
when there were doubts.

Free-Living Study. We instructed participants to wear smart eye-
glasses for one day, fromwake-up to bedtime. Two 90min. charging
breaks were unavoidable due to battery limitations. Therefore, we
instructed participants to schedule charging breaks so that they
would not conflict with their meal times or other logistic require-
ments. Participants were asked to wear the smart eyeglasses as
much as possible during the day, with exceptions for potentially
safety-critical or device-damaging activities, including showering
or intensive sports. Use exceptions were also recommended if the
smart eyeglasses could prevent wearing required items in specific
tasks, e.g. a helmet, safety goggles, or prescription eyeglasses. Par-
ticipants were asked to note down the start and end of eating events,
and when they were not wearing the smart eyeglasses, all rounded
to the minute. We review the participant annotations against signal
recordings to generate the ground truth. If there were conflicts or
doubts, we interviewed participants about that particular period
and could resolve any mismatches.

Recording Statistics. In-lab recording included ∼120min of data,
with 8± 1.5min per participant, and a cumulative eating time of
22min, 1.5± 1min per participant. Free-living data was ∼6912min,
461± 86min per participant, with a cumulative eating time of
∼544min, 36± 15min per participant.

3.6 Evaluation Procedure
We used leave-one-participant-out (LOPO) cross-validation (CV),
whereby all in-lab data except data of one participant was used
for parameter fitting and model training, and free-living data of
the left-out participant was used for testing both algorithms. Per-
formance results across all LOPO-CV folds were kept for analysis.
Free-living data was excluded from training since participant anno-
tations provided eating events only, thus including non-chewing
gaps. In-lab annotation specifically focused on chewing sequences.
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We retrieved insertions, deletions, and true positives, which were
used to calculate F1 scores, precision, and recall. For SVM model
evaluations, we varied the sliding window size between 3 s and
60 s. Ground truth was adapted to the frame-based structure of the
sliding windows. For the two-threshold algorithm, performance
was further detailed by sweeping the lower threshold at a fixed,
training-derived upper threshold to construct Precision-recall (PR)-
curves. Ground truth was adapted to sample rate resolution.

4 RESULTS AND DISCUSSION
Figure 3 shows a comparison between the two-threshold algo-
rithm and SVM models. Box plots illustrate medians, inter-quartile
ranges (IQR), and outliers (> 1.5×IQR). The two-threshold-based
algorithm showed the best median F1 score, between 0.6 and 0.72.
Among SVMmodels, the quadratic kernel had a larger variance and
underperformed both, RBF and linear kernels. Performance varied
across individual participants for all models, while at substantially
lower F1 scores for SVM models. Reasons include data artefacts
of proximity sensors, e.g. eyeglasses movement at the head. In-
stead of training SVM models specific to a head side (L, R), SVM*
models were trained from data of both head sides to investigate, if
additional observations may improve performance. Among SVM*
models, linear kernels showed the best performance, however, could
not compete with the two-threshold algorithm results. We consider
the head side separately here, to compare with published work.
Data fusion between left and right sides, or with additional sensors
may improve performance.
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Figure 3: Performance comparison between two-threshold
algorithm (Thresh.) and SVMmodels at window size of 3 s, for
left (L) and right (R) head sides. SVM* models were trained
from combined training data of both head sides. Box plots
illustrate medians, IQR, and outliers.

To further analyse the two-threshold algorithm performance,
we derived PR-curves per participant and average by sweeping the
lower threshold on free-living data. Figure 4 illustrate that a top
recall can be reached, and maximum precision reaches ∼0.7.

To assess the One-Class-SVM performance, we analysed retrieval
performance over sliding window size for RBF kernels. Figure 5
shows precision and recall across sliding windows. Larger window
size helped to increase model precision from ∼0.2 to ∼0.3, however
at expense of reduced recall, from ∼1.0 to ∼0.9. Larger windows
may have eliminated detection fragmentation, but still could not

0.6 0.7 0.8 0.9 1.0
Recall

Average

0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

A B

Figure 4: PR-curves of the two-threshold algorithm for sweep-
ing lower thresholds per participant, and averaged curve.
A: Left head side. B: Right head side.

substantially increase feature discrimination. Our SVM parameteri-
sation closely resembles that of Selamat et al. [4]. In particular, the
authors proposed a 3 s window to extract features. Our analysis
confirms that SVM models yield top recall, even in free-living data.
However, we could not compare retrieval precision as Selamat et
al. reported accuracy only.
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Figure 5: Precision and recall of SVMs with RBF kernel on
free-living data for left (L) and right (R) head sides, trained
for varying sliding window sizes.

5 CONCLUSION
We investigated temporalis muscle contraction to detect eating
events in free-living using proximity sensors embedded in regular-
look smart eyeglasses. The two-threshold algorithm, designed based
on detailed signal analysis, outperformed in this study the SVM-
based data models, with a f1-score ranging between 0.6 and 0.7.
While the SVM models evaluated in this study could reach maxi-
mum recall, their precision was often below 0.5. Detecting eating
events using proximity sensors embedded in smart eyeglasses is a
promising approach for unconstrained ADM. Further research is
needed to find algorithms that could increase retrieval performance
for eating event detection, considering sensor data acquired under
everyday life conditions.
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