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Abstract—We present a modelling and simulation frame-
work to synthesise body-worn inertial sensor data based on
personalised human body surface and biomechanical models.
Anthropometric data and reference images were used to create
personalised body surface mesh models. The mesh armature was
aligned using motion capture reference pose and afterwards mesh
and armature were parented. In addition, skeletal models were
created using an established musculoskeletal dynamic modelling
framework. Four activities of daily living (ADL), including upper
and lower limbs were simulated with surface and skeletal models
using motion capture data as stimuli. Acceleration and angular
velocity data were simulated for 12 body areas of surface
models and 8 body areas of skeletal models. We compared
simulated inertial sensor data of both models against physical
IMU measurements that were obtained simultaneously with video
motion capture. Results showed average errors of 27 ◦/s vs.
31 ◦/s and 1.7m/s2 vs. 3.3m/s2 for surface and skeletal models,
respectively. Mean correlation coefficients of body surface models
ranged between 0.2 – 0.9 for simulated angular velocity and
between 0.1 – 0.8 for simulated acceleration when compared to
physical IMU data. The proposed surface modelling consistently
showed similar or lower error compared to established skeletal
modelling across ADLs and study participants. Body surface
models can offer a more realistic representation compared to
skeletal models for simulation-based analysis and optimisation
of wearable inertial sensor systems.

Index Terms—Accelerometer, gyroscope, multiscale modelling

I. INTRODUCTION

Biomechanical models can provide a basis for evaluating
wearable system design, e.g. to analyse the performance of
digital biomarker estimation algorithms depending on the
wearable sensor position [1]. Validated musculoskeletal mod-
els are provided, e.g. by the open-source OpenSim plat-
form (https://simtk.org/projects/opensim) [2]. However, the
biomechanical models provide a skeletal representation only,
thus do not account for individual body surfaces. Another
branch of modelling approaches emerged from 3D/4D com-
puter graphics with the intend to create realistic animations
and visual effects, e.g. by scanning human bodies. The latter
models lack a validated biomechanical basis. For example,
Blender’s open-source software tools (http://www.blender.org)
were used to create animated films, among others. Recently
Blender was used to rig statistical shape models and control
surface models by an inverse kinematic solver [3].

In this work, we combine biomechanical modelling based on
video motion capture (MoCap) marker data and surface mod-

Fig. 1. Overview of modelling approaches. A: Skeletal model with simulated
IMU cubes. B: Armature of surface model posed by MoCap Empties. C:
Surface model with rigged armature. D: Frontal view faces of body areas of
interest used to synthesise inertial sensors.

elling towards improved validity of inertial sensor synthesis.
In particular, this paper provides the following contributions:

1) We present a modelling and simulation framework to
synthesise inertial sensor data based on personalised
body surface models, created from biomechanical and
anthropometric data. We simulate sensor data of inertial
measurement units (IMUs), including triaxial accelera-
tion sensors and triaxial transducers of angular velocity.

2) We analyse sensor synthesis performance by comparing
generated inertial sensor data from the surface model
against simultaneous inertial and MoCap measurements
from five study participants in different activities of
daily living (ADLs). In addition, we compare synthesis
performances of surface models and skeletal models.
Personalised surface models and skeletal models were
created for each study participant.

II. RELATED WORK

Different approaches have been investigated for sensor
synthesis, focusing on optimal sensor positioning and data
augmentation for machine learning. Mundt et al. [4] estimated
joint kinematics and kinetics using musculoskeletal models
to simulate acceleration and angular velocity data from five
selected sensor positions as input for an artificial neural



network. Their results showed that the simulation approach
is a valid method for data augmentation in biomechanics.
Hoareau et al. [5] compared simulated IMU data with real
IMU data for motion classification based on statistical features
extracted from the time series signal. Sharifi Renani et al. [6]
compared synthetic and measured IMU data during walking to
increase accuracy in deep learning models for joint kinematic
predictions. OpenSim was used to generate synthetic IMU
data with known relative orientation and displacement of the
inertial sensors tracked by markers. Zimmermann et al. [7]
proposed an IMU-to-segment mapping and orientation align-
ment for the lower body. Kwon et al. [8] presented IMUTube,
an automated processing pipeline to convert video of human
activity into virtual streams of IMU data. Lämsä et al. [9]
used neural networks to generate IMU signals and features
from monocular videos of human activities. However, there
are persisting challenges concerning validity and variability of
data augmentation for sensor time series [10] and simulated
data is often used for augmentation during model training only.

In this work, we consider personalised inverse kinematic
models to synthesise inertial sensors at all limbs. Compared to
previous work, our simulation approach includes personalised
surface models based on anthropometric data that are animated
based on the inverse kinematic models. Moreover, we analyse
several ADLs besides walking, which has been primarily con-
sidered so far. The selected ADLs include complex movement
sequences that occur in everyday life, and thus provide insight
into IMU capture of participant mobility.

III. METHODS

Fig. 2. Framework overview. MoCap data were obtained and processed
to create 3D human surface models and skeletal models. Body areas of
interest were defined to connect inertial sensor model instances to surface
models. Motion marker data was used to simulate ADLs and synthesise inertial
sensors. Simulated inertial data was mapped to physical IMU measurements
and residual error as well as correlation were analysed.

Our surface modelling framework consists of six
steps (Fig. 2). Initially, MoCap data was collected, processed
and joint centres were calculated using standard biomechanical
equations. Subsequently, anthropometric data and MoCap
data was used to create a 3D body surface model and a
skeletal model. Inertial sensor model instances were created,
comprising positions and orientations of simulated sensors
within body areas of interest. To find a simulated sensor
that best matches a physical IMU, axis mapping was applied
across all synthesised sensors within a body area of interest,
i.e. a search region around each physical IMU. Finally,
synthesis performance was estimated by deriving residual

error and correlation based on the simulated and measured
sensor timeseries per ADL.

A. Surface model

Anthropometric data and reference images were used to cre-
ate the body surface mesh model in the open-source software
MakeHuman (http://www.makehumancommunity.org). Every
created mesh model contained one mesh and one rigged arma-
ture. Mesh vertices of the created surface models correspond to
constant anatomical positions on the body surface. Mesh mod-
els were subsequently imported into Blender and unparented
so that the armature could be separately aligned using Empties
from MoCap markers static trial (reference pose). The original
mesh import was replaced by a second import of the mesh
model as reference poses of MakeHuman and the MoCap data
were not identical (Fig. 3C). The newly imported mesh was
manually fitted to the reference pose and body circumferences
indicated by Empties of the static trial (Fig. 3D). Once an
optimal alignment of mesh and Empties was achieved the mesh
and the armature of the original import were parented with
automatic weight distribution across vertices. The resulting
model pose was set as new reference pose.

B. Skeletal model

For skeletal models, an existing OpenSim full-body thora-
columbar spine model, as described by Schmid et al. [12], was
used. The model was selected to account for the degrees of
freedom at upper extremities and spine area. Since the original
body model represents bones, joints, and muscle links only,
an auxiliary structure with a cylindrical shape was designed
to approximate limb surfaces. At the auxiliary structure, 4
rings with 5-6 positions per ring were defined to attach sensors
represented by cubes (Fig. 1A).

C. Inertial sensor model

A global 3D Cartesian coordinate frame G with coordinate
axes (x,y,z) was defined, besides a body-local frame L, to
support spatial representation of the surface model and the
skeletal model, respectively.

An additive signal model was used to represent acceleration
signals, where ~a(t) = (ax, ay, az) is the sum of the sensor’s
dynamic acceleration ~ad(t) and the equivalent gravitational
component ~ag(t) acting on the sensor device, according to
~a(t) = ~ad(t) + ~ag(t). Vector ~k(t) = (kx(t), ky(t), kz(t))
is a position vector at time t of a simulated sensor instance,
i.e face normal for surface models and main surface normal
for skeletal model cubes. Dynamic acceleration ~ad(t) was
synthesised from the second derivative of vector ~k(t) fol-
lowing ~ad(t) = d2~k(t)

dt2 . The static acceleration component
~ag(t) was computed by mapping sensor orientation taken
from rotation matrix (QG

L ∈ R3x3) to the gravity-carrying
axis (~j = (0, 1, 0)), i.e. along the y-axis of the global
coordinate frame G. Rotation matrix QG

L was derived via
quaternion rotation from face normal and cube normal position
vectors, respectively. The resulting unit vector ~kj ∈ R3x3

represents a per-axis gravity contribution:



~kj(t) = QG
L
~k(t) ·~j. (1)

Unit vector ~kj(t) was used to obtain ~ag(t) for all sensor axes
with g = 9.81m/s2 according to ~ag(t) = ~kj(t) · g. Angular
velocity, as measured by gyroscope sensors, was synthesised
by deriving orientation estimates with respect to time:

~ω(t) =
dQG

L
~k(t)

dt
, (2)

where QG
L
~k(t) refers to the simulated sensor orientation and

satisfies (QG
L )

−1 = (QG
L )

T as well as det(QG
L ) = 1 [11].

For surface models, we derived sensor positions by selecting
face normals within body areas of interest (see Figs. 1D
and 3E). For skeletal models, sensors were designed as inertia-
free 5mm3 cubes and scaled in volume by factors of 0.001,
0.005, and 0.003 in x-, y-, and z-axis, respectively. Sensor
cubes were uniformly positioned at models using parame-
terised coordinates according to the auxiliary limb structure.
We virtually attached 24 sensors at each upper and lower
leg and 20 sensors at each upper and lower arm by direct-
link (WeldJoint), resulting in a total of 88 simulated sensors,
see Fig. 1A.

Fig. 3. A: Marker setup used for MoCap and body model construction. B:
Imported MoCap marker Empties in Blender (without IMU instances). C:
Mesh and rigged armature of MakeHuman reference pose with Empties of
static MoCap trial. D: Mesh and rigged armature after manual adjustment
matched to static MoCap trial. E: Highlighted faces indicate body areas of
interest in rear view (see also Fig. 1D).

D. Simulation and inertial sensor synthesis

Simulations of surface and skeletal models were performed
using MoCap marker data of study participants, while perform-
ing different ADLs. To track marker movement during surface
modelling, bone constraints were added to the armature.
Acceleration and angular velocity data were synthesised at
100 Hz.

E. Axis mapping

Within each body area of interest the best matching surface
position and cube position were found by minimising the
root mean squared error (RMSE) of simulated sensor data
against the respective physical IMU sensor data. A search
was performed for each participant and ADL, across all
sensor axis permutations, e.g., (x,y,z), (y,z,x), and including
all axis inversions, e.g., (-x,y,z), (x,-y,z). For angular velocity
in both models and acceleration in skeletal models, 48 axis
combinations were searched (6 axis permutations and 8 axis

inversions). For acceleration in surface models, 2304 axis com-
binations (6x6 axis permutations times 8x8 axis inversions)
were searched as gravity axis ~kj and thus static acceleration
could vary per sensor position.

Between 59−119 face normals were extracted for each body
area of interest that ranged in area between 29.5 cm2 at fore-
arms and 146.2 cm2 at thighs. Corresponding surface model
face area ranged between 0.85 cm2 and 6.1 cm2. Figure 3E
and Fig. 1D illustrate all body areas of interest. Based on [1]
for skeletal models, sensor cube positions on arms and legs
were adjusted to body areas of interest around approximate
physical IMU positions (see Fig. 1A).

F. Data set

Five healthy study participants were considered in this work.
All participants gave written consent prior to participation
and ethics approval was granted by the institutional ethics
committee. Anthropometric data of the participants were col-
lected to derive body segment masses and joint centres using
Visual3D (C-Motion Inc., Germantown, MD, USA). Table I
details participant data.

TABLE I
ANTHROPOMETRIC DATA OF PARTICIPANTS. F: FEMALE. M: MALE.

BMI: BODY MASS INDEX.

ID Height
[m]

Weight
[kg]

Age
[years]

Sex
[F/M]

BMI
[kg/m2]

Leg length
right [m]

Leg length
left [m]

P1 1.72 56 29 F 18.93 0.90 0.90
P2 1.71 56 23 F 19.15 0.95 0.94
P3 1.72 67 27 M 22.65 0.89 0.88
P4 1.72 86 25 M 29.07 1.00 1.00
P5 1.65 62 28 F 22.77 0.90 0.89

Means 1.70 65.40 26.40 (F=3; M=2) 22.51 0.93 0.92

G. Data acquisition and processing

In total 54 reflective spherical markers were placed at
anatomical landmarks according to the marker setup shown
in Fig. 3A. A synchronized and calibrated 11-camera marker-
based MoCap system (ten Oqus7+ infrared cameras and one
Oqus5+ highspeed camera, Qualisys AB, Gothenburg, Swe-
den) was used to acquire gold-standard MoCap data at a frame
rate of 100 Hz. The MoCap system was time-synchronized
with 16 IMUs (MyoMotion, Noraxon, AZ, USA), attached
at each body segment to measure acceleration and angular
velocity.

Prior to each measurement, a static reference trial was
performed to reconstruct segments and define dimensions,
joint centers, and segment coordinate system, as well as to
calibrate IMU sensors. Subsequently, participants were asked
to perform four different ADLs involving upper and lower
limb movements: shelve ordering (SO), stairs ascending (SA),
stairs descending (SD), and walking (W).

Data pre-processing, including labelling and gap filling was
conducted using Qualysis Track Manager, v. 2018. Subse-
quently, a 6-degree of freedom inverse kinematics constrained
model (IOR Multi-Segment Trunk [13] and a Conventional
Gait Model with CODA pelvis model [14] were created using
Visual3D (Fig. 3C). The models served as input data (i.e to
calculate joint centers) for surface modelling. MoCap data
was filtered (6 Hz lowpass Butterworth filter), converted and



imported as Empties into Blender (Fig. 3D). Maker MoCap
data was imported into OpenSim to create skeletal models.

H. Error estimation and correlation analysis

Synthesis performance was evaluated for both surface and
skeletal models by deriving RMSE between simulated sensor
timeseries after axis mapping and physically measured inertial
sensor timeseries for each sensor type, body area of interest,
participant, and ADL. Furthermore, Pearson correlation coef-
ficients were calculated. RMSE and correlation analyses were
averaged across sensor axes.

IV. RESULTS

Figure 4 shows an excerpt of simulated angular velocity
timeseries from surface (~̂ωSU(t)) and skeletal (~̂ωSK(t)) models,
compared to measured IMU sensor timeseries (~ω(t)). Overall,
measured and simulated timeseries patterns were in agreement
across all sensor positions for both surface and skeletal mod-
els. Certain deviations, in particular during dynamic move-
ments, are however observable. Figure 5 shows an excerpt
of simulated acceleration signals for surface (~̂aSU(t)) and
skeletal (~̂aSK(t)) models, compared to measured IMU sensor
timeseries (~a(t)). Here too, timeseries are in agreement, with
larger visible deviations for ~̂aSK(t) compared to ~̂aSU(t).

Fig. 4. Excerpt of measured (~ω(t)) and simulated timeseries for sur-
face (~̂ωSU(t)) and skeletal (~̂ωSK(t)) models. A: Upper arm position during
shelve ordering of Participant P1. B: Shank position during stairs ascending
of Participant P4.

Fig. 5. Excerpt of measured (~a(t)) and simulated timeseries for sur-
face (~̂aSU(t)) and skeletal (~̂aSK(t)) models. A: Shank position during stairs
ascending of Participant P2. B: Thigh position during walking of Participant
P3.

Table II summarises RMSE and correlation results of sur-
face and skeletal models per ADL at limbs. Surface models
showed overall lower RMSE compared to skeletal models for
angular velocity (> 4.3◦/s) and acceleration (> 1.5m/s2).
Surface models were superior for stairs ascending (SA) and
stairs descending (SD). For shelve ordering (SO) agreement
for angular velocity from skeletal models was larger than for
surface models. For SO acceleration, both models performed
similarly. For walking (W), both models showed similar

TABLE II
RMSE MEAN AND SD AS WELL AS MINIMUM AND MAXIMUM PEARSON

CORRELATION COEFFICIENTS R OF SIMULATED SENSOR TIMESERIES FOR
SURFACE AND SKELETAL MODELS AT LIMBS ACROSS ALL PARTICIPANTS.

Model ADL Angl. vel ( ◦/s) Acc (m/s2)

RMSE r RMSE r

Surface
model (SU)

Mean SD Min Max Mean SD Min Max
SO 23.93 0.2 0.10 0.70 1.57 0.18 0.07 0.74
SA 24.93 0.17 0.20 0.91 1.35 0.09 0.31 0.80
SD 24.29 0.16 0.18 0.88 1.94 0.15 0.44 0.83
W 33.77 0.11 0.29 0.91 2.08 0.14 0.35 0.74

Mean 26.73 0.16 0.19 0.85 1.74 0.14 0.29 0.78

Skeletal
model (SK)

SO 18.64 0.26 0.30 0.78 1.8 0.16 0.12 0.68
SA 33.84 0.1 0.20 0.95 3.18 0.11 0.15 0.68
SD 36.38 0.11 0.16 0.92 3.98 0.12 0.22 0.74
W 35.37 0.14 0.49 0.91 4.35 0.17 0.24 0.72

Mean 31.06 0.15 0.29 0.89 3.33 0.14 0.19 0.70

Fig. 6. Comparison of simulated sensor data RMSE of surface (SU) and
skeletal (SK) models per participant (P1-P5), body position, and sensor
type, averaged over all ADLs. A: Angular velocity RMSE mean and sd. B:
Acceleration RMSE mean and sd.

angular velocity errors, while surface models yielded lower
acceleration error.

Figure 6 compares sensor synthesis performance of sur-
face and skeletal models per participant and body position,
averaged over all ADLs. For most participants and body
positions surface models yielded lower error than skeletal
models. Variability between participants was observed but no
clear relation to anthropometric variables could be made.

Figure 7 shows sensor synthesis performance averaged
across all five participants and all sensor positions of sur-
face models. The analysis includes additional body positions
included in the surface modelling (cf. Fig. 3). Angular ve-
locity and acceleration of shelve ordering (SO) yielded the
lowest RMSE for all sensor positions, except upper arms and
forearms, which can be explained by the specific movement.
Overall, the more body segments are involved in an ADL, the
larger the RMSE mean and sd. Mean RMSE across all sensor
positions ranged between 17.98 ◦/s – 26.8 ◦/s and 1.42m/s2

– 1.9m/s2.

V. DISCUSSION AND CONCLUSIONS

We introduced a sensor synthesis framework based on
human body surface models and demonstrated its utility in
different ADLs. Surface representations were generated based



Fig. 7. A: Angular velocity RMSE mean and sd for all ADLs per sensor
position averaged over patients for surface models. B: Acceleration RMSE
mean and SD for all ADLs per sensor position averaged over patients
for surface models. SO: Shelve ordering. SA: Stairs ascending. SD: Stairs
descending. W: walking.

on anthropometric data, i.e. without 3D body scanning. Kine-
matic behaviour of our surface models was derived from
validated biomechanical modelling. We compared simulated
inertial sensor data of the surface models against physical IMU
measurements and established skeletal models. Results showed
average errors of 26.7 ◦/s vs. 31.1 ◦/s for angular velocity and
1.7m/s2 vs. 3.3m/s2 for acceleration for surface and skeletal
models, respectively (Tab. II). Overall, the proposed surface
modelling approach outperformed existing skeletal models.
Only for shelf ordering, surface models showed a larger error
compared to skeletal models, however errors remained in a
similar band, highlighting that surface models are feasible for
synthesising inertial sensors.

RMSE and correlations observed in our analysis are within
ranges reported in literature, although previous work primarily
analysed walking only. Sharifi Renani et al. [6] compared
synthetic and measured IMU data at the pelvis, thigh, shank,
and foot during walking. RMSE for angular velocity ranged
between 22.9◦/s – 58.4◦/s depending on sensor positioning.
Correlations ranged between 0.29 – 0.98. RMSE for accelera-
tion ranged between 0.62m/s2 – 2.46m/s2 with correlations
between 0.75 – 0.96. Zimmermann et al. [7] reported Pearson
correlations also during walking, averaged across all IMUs
(feet, shanks, thighs, and pelvis) at 0.57 for accelerometers
and 0.93 for gyroscopes. Average RMSE across all IMUs was
4.02m/s2 and 35◦/s for acceleration and angular velocity.
Authors attributed the synthetic gap to additional artifacts due
to clothing and soft-tissue that cause additional accelerations.

Our results showed inter-individual simulation error vari-
ability (Fig. 6), which could be partly attributed to varying
BMI, as P1 had the lowest and P4 the highest BMI. However,
error variability may be caused as well by individual body
proportion variations that were not accurately captured. Based
on the promising performance results for surface models
shown in our present work, further investigations could ad-

dress body parts that are profoundly affected by soft tis-
sue variations, including abdomen, breast, and upper thighs.
Moreover, surface modelling could be used in the future to
improve garment fitting evaluation under motion dynamics or
to investigate body-sensor attachment. By using open-source
Blender toolboxes and frameworks, our approach enhances
reproducibility compared to previously published modelling
and simulation techniques, in particular with regard to a more
complex ADL movement analysis.
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